

中国工程建设标准化协会标准

基坑土钉支护技术规程

Specification for soil nailing in foundation excavations

1997年 北京

前 言

土钉支护已在我国基坑工程中得到广泛应用并取得显著效益。本规程在总结近年我国土钉支护工程实践并参考国外经验的基础上,经过广泛征求意见和修改,完成了编写工作。最后由中国工程建设标准化协会组织专家会议审查定稿。

现批准《基坑土钉支护技术规程》,编号为 CECS96:97,并推 荐给各工程建设设计、施工单位使用。在使用过程中,如发现需要 修改补充之处,请将意见和有关资料寄交给北京清华大学土木工 程系(邮政编码:100084)。

本规程主编单位:清华大学土木工程系 总参工程兵科研三所 参编 单位:中航勘察设计研究院 广州军区科研设计所 山东建筑工程学院

主 要 起 草 人:陈肇元、周丰峻、曾宪明、马金普、毕孝全修学纯、宋二祥、李保国、喻良明、张 鑫崔京浩、秦四清、赵明伦、苏绍增、张明聚陈叶青

中国工程建设标准化协会 1997年12月16日

目 次

1	总则	(1)
2	术语、符号	(2)
3	基本规定 ••••••	(4)
4	工程调查与岩土工程勘察 •••••••	(6)
5	设计	(8)
6	施工((20)
7	土钉现场测试••••••••••••••••••••••••••••••••••••	(26)
8	施工监测••••••••••••••••••••••••••••••••••••	(28)
9	施工质量检查与工程验收 ••••••••••••••••••••••••••••••••••••	(29)

1 总 则

- **1.0.1** 为使土钉支护用于基坑工程做到技术先进、经济合理、安全可靠和确保质量,特制定本规程。
- 1.0.2 本规程适用于基坑直立开挖或陡坡开挖时临时性土钉支护的设计与施工,采用以钢筋作为中心钉体的钻孔注浆型土钉,基坑的深度不宜超过 18m,使用期限不宜超过 18 个月。

对于其他类型的土钉如注浆的钢管击入型土钉或不注浆的角钢击入型土钉,可参照本规程的基本计算原则进行支护的稳定性分析。

1.0.3 土钉支护适用于下列土体:可塑、硬塑或坚硬的粘性土,胶结或弱胶结(包括毛细水粘结)的粉土、砂土和角砾,填土,风化岩层等。

在松散砂土和夹有局部软塑、流塑粘性土的土层中采用土钉 支护时,应在开挖前预先对开挖面上的土体进行加固,如采用注浆 或微型桩托换。

- 1.0.4 土钉支护工程的设计、施工与监测宜统一由支护工程的施工单位负责,以便于及时根据现场测试与监控结果进行反馈设计。
- 1. 0. 5 土钉支护工程的设计、施工与验收除本规程已作规定者外,尚应符合《岩土工程勘察规范》8GB50021—94)、《建筑地基基础设计规范》(GBJ7—89)、《混凝土结构设计规范》(GBJ10—89)等有关现行国家标准的规定。

2 术语、符号

2.1 术语

2.1.1 十钉

用来加固或同时锚固现场原位土体的细长杆件。通常采取土中钻孔、置入变形钢筋(即带肋钢筋)并沿孔全长注浆的方法做成。 土钉依靠与土体之间的界面粘结力或摩擦力,在土体发生变形的 条件下被动受力,并主要承受拉力作用。土钉也可用钢管、角钢等 作为钉体,采用直接击入的方法置入土中。

2.1.2 土钉支护

以土钉作为主要受力构件的边坡支护技术,它由密集的土钉群,被加固的原位土体,喷混凝土面层和必要的防水系统组成。

2.2 符号

2.2.1 材料性能

- $R \longrightarrow \pm$ 钉的极限抗拉能力
- c ——十的粘聚力
- γ ——土的重度
- τ ——土钉与土体之间的界面粘结强度
- fvk ——钢筋抗拉强度标准值

2.2.2 作用及作用效应

- N——土钉的最大拉力或设计内力
- p——与土钉设计内力相应的土体侧压力
- 70——作用于支护喷混凝土面层的侧向土压力

q——地表均布荷载

la——土钉伸入破坏面一侧稳定土体中的长度

d ——土钉钢筋直径

d₀──土钉孔径

%——土钉水平间距

s_v──土钉竖向间距

φ——土的内摩擦角

 θ ——土钉倾角

H ——基坑深度

2.2.4 计算系数

2.2.3 几何参数

F_s——支护的内部整体稳定性安全系数

 $F_{s,d}$ ——土钉的局部稳定性安全系数

3 基本规定

- **3. 0. 1** 土钉支护用于基坑开挖施工应采取从上到下分层修建的施工工序:
 - 1 开挖有限的深度;
 - 2 在这一深度的作业面上设置一排土钉,并喷混凝土面层;
 - 3 继续向下开挖,并重复上述步骤,直至所需的基坑深度。
- 3.0.2 土钉支护的设计施工应重视水的影响,并应在地表和支护内部设置适宜的排水系统以疏导地表径流和地表、地下渗透水。当地下水的流量较大,在支护作业面上难以成孔和形成喷混凝土面层时,应在施工前降低地下水位,并在地下水位以上进行支护施工。
- **3.0.3** 土钉支护的设计施工应考虑施工作业周期和降雨、振动等环境因素对陡陂开挖面上暂时裸露土体稳定性的影响,应随开挖随支护,以减少边坡变形。
- **3.0.4** 土钉支护的设计施工应包括现场测试与监控以及反馈设计的内容。施工单位应制定详细的监测方案,无监测方案不得进行施工。
- 3.0.5 土钉支护施工前应具备下列设计文件:
 - 1 工程调查与岩土工程勘察报告;
- 2 支护施工图,包括支护平面、剖面图及总体尺寸;标明全部 土钉(包括测试用土钉)的位置并逐一编号,给出土钉的尺寸(直 径、孔径、长度)、倾角和间距,喷混凝土面层的厚度与钢筋网尺寸, 土钉与喷混凝土面层的连接构造方法;规定钢材、砂浆、混凝土等 材料的规格与强度等级;
 - 3 排水系统施工图,以及需要工程降水时的降水方案设计;
 - 4 施工方案和施工组织设计,规定基坑分层、分段开挖的深

- 度和长度,边坡开挖面的裸露时间限制等;
- **5** 支护整体稳定性分析与土钉及喷混凝土面层的设计计算书;
- 6 现场测试监控方案,以及为防止危及周围建筑物、道路、地 下设施而采取的措施和应急方案。
- 3.0.6 当支护变形需要严格限制且在不良土体中施工时,宜联合使用其他支护技术,将土钉支护扩展为土钉一预应力锚杆联合支护、土钉一桩联合支护、土钉一防渗墙联合支护等,并参照相应标准结合本规程进行设计施工。

4 工程调查与岩土工程勘察

- **4.0.1** 土钉支护设计前必须进行充分的工程调查,收集场地周围已建工程及本项拟建工程的设计施工文件与工程地质和水文地质勘察资料,并进行现场考察和必要的勘察,查明基坑周围已有建筑物、构筑物、埋设物和道路交通等周边环境条件,当地气象条件,地层结构和岩土物理力学性质,水文地质条件及与周围地表水体的补给排泄关系等。
- 4.0.2 基坑土钉支护的工程勘察宜与拟建工程的建筑地基勘察同时进行,勘察的范围应根据基坑开挖深度、场地的工程地质条件和环境条件确定,可在基坑开挖线外按开挖深度的1~2倍范围内布置勘探点。开挖线外和沿基坑周边的勘探点间距视岩土和工程的复杂程度而定,可为15~30m,但每一剖面线上不宜少于2~3个。勘探点的深度可取土钉最大埋深以下5~8m。当场地有不良土层、暗沟、暗浜等异常地段时应加密勘探点。

如拟建工程的建筑地基勘察业已完成且所获资料不能完全满足土钉支护设计与施工要求时,则应进行补充勘察;此时的勘探点布置可视具体情况和要求而定。

4.0.3 全部勘探点均应分层取土做土工试验或进行原位测试,主要土层的每一重点试验项目要求不少于6个数据。室内测试项目应有重度,含水量,抗剪强度(砂土的直剪,粘性土的固结快剪、快剪或三轴固结不排水剪等),粘性土的可塑性、压缩性,砂土的颗粒分析与休止角等。原位测试项目应有标准贯入试验,软土的十字板剪切试验等。当人工填土层厚度大于1m时应进行重度和抗剪强度测试。

通过测试确定每一层土的分类和状态,给出分层土的内摩擦角和粘聚力等抗剪强度指标。

- **4.0.4** 对场地水文地质条件,应查明滞水层、潜水层和承压水的位置,给出滞水层的范围、潜水层的水位和承压水的压力,并根据续要进行抽水试验测定土层的渗透性。
- **4.0.5** 为土钉支护设计提供的工程调查与工程地质勘察报告应包括以下主要内容**.**
 - 1 基坑情况概述;
 - 2 勘察方法和勘察工作布置;
- **3** 场地地形地貌、地层结构、岩土物理力学性质、岩土参数的分析评价及建议值:
- 4 场地水文地质条件,包括地下水埋藏条件,即各含水层、隔水层埋深和分布;水位及其变化幅度和各含水层渗透系数,地下水的类型、压力、流向、补给来源与排泄方向,评价地下水对土钉支护设计和施工及使用期的影响,对基坑施工的工程降水方案及其设计参数提出建议,并估计由于降低地下水位引起的地表沉降值及其对周围环境安全的影响;
- 5 基坑周边影响范围内各种建筑物、构筑物、道路和地下管线等设施的结构类型、准确位置和工作状态,分析开挖支护过程对这些地面、地下工程的影响:
 - 6 对土钉支护的设计、施工及监测提出建议。
- 4.0.6 勘察报告应附以下主要图表:
- 1 勘探点平面位置图,其上应附有基坑的相对位置、开挖线和周边已有工程设施等:
 - 2 沿基坑边线的岩土工程地质剖面图;
 - 3 代表性的钻孔柱状图;
 - 4 室外和室内试验的有关图表;
 - 5 岩土工程计算的有关图表。

5 设 计

5.1 一般规定

- 5.1.1 土钉支护的设计应包括下列内容:
- 1 根据工程类比和工程经验,初选支护各部件的尺寸和材料 参数;
 - 2 进行计算分析,主要有:
 - 1) 支护的内部整体稳定性分析与外部整体稳定性分析;
 - 2) 土钉的设计计算;
 - 3) 喷混凝土面层的设计计算,以及土钉与面层的连接计算:

通过上述计算对各部件的初选参数作出修改和调整,给出施工图:

对重要的工程,宜采用有限元法对支护的内力与变形进行分析:

- **3** 根据施工过程中获得的量测监控数据和发现的问题,进行反馈设计。
- **5.1.2** 土钉支护的整体稳定性计算和土钉的设计计算采用总安全系数设计方法,其中以荷载和材料性能的标准值作为计算值,并据此确定土压力。

喷混凝土面层的设计计算,采用以概率理论为基础的结构极限状态设计方法,设计时对作用于面层上的土压力,应乘以荷载分项系数 1.2 后作为计算值,在结构的极限状态设计表达式中,应考虑结构重要性系数。

5.1.3 土钉支护设计应考虑的荷载除土体自重外,还应包括地表荷载如车辆、材料堆放和起重运输造成的荷载,以及附近地面建筑

物基础和地下构筑物所施加的荷载,并按荷载的实际作用值作为标准值。当地表荷载小于 15kN/m² 时则按 15kN/m² 取值。此外,当施工或使用过程中有地下水时,还应计入水压对支护稳定性、土钉内力和喷混凝土面层的作用。

5.1.4 土钉支护设计采用的土体物理力学性能参数以及土钉与周围土体之间的界面粘结力参数均应以实际测试结果作为依据,取值时应考虑到基坑施工及使用过程中由于地下水位和土体含水量变化对这些参数的影响,并对其测试值作出偏于安全的调整。

表 5.1.5 界面粘结强度标准值

τ(kPa)
30~60
15~30
30~50
50~70
70~90
50~100
70~90
90~120
120~160
160~200

注:表中数据作为低压注浆时的极限粘结强度标准值。

5.1.5 土的力学性能参数 c, φ , 土钉与土体界面粘结强度 τ 的计算值取标准值,界面粘结强度的标准值可取为现场实测平均值的 **0.8** 倍。以上参数应按不同土层分别确定。进行初步设计时,界面粘结强度的标准值可参照表 **5.1.5** 的数据取值。

5.1.6 土钉支护的设计计算可取单位长度支护按平面应变问题 进行分析。对基坑平面上靠近凹角的区段,可考虑三维空间作用的 有利影响,对该处的支护参数(如土钉的长度和密度)作部分调整。 对基坑平面上的凸角区段,应局部加强。

5.2 支护各部件参数

- **5.2.1** 主要承受土体自重作用的钻孔注浆钉支护,其各部件(图 **5.2.1)**尺寸可参考以下数据初步选用:
- 2 土钉孔径在 75~150mm 之间,注浆强度等级不低于 12MPa,3 天不低于 6MPa;
- 3 土钉长度l与基坑深度H之比对非饱和土宜在0.6到 1.2的范围内,密实砂土和坚硬粘土中可取低值;对软塑粘性土,比值 l/H 不应小于 1.0。为了减少支护变形,控制地面开裂,顶部土钉的长度宜适当增加。非饱和土中的底部土钉长度可适当减少,但不宜小于 0.5H;含水量高的粘性土中的底部土钉长度则不应缩减;
- 4 土钉的水平和竖向间距 S_h 和 S_v 宜在1.2~2m的范围内,在饱和粘性土中可小到1m,在干硬粘性土中可超过2m;土钉的竖向间距应与每步开挖深度相对应。沿面层布置的土钉密度不应低于每 $6m^2$ 一根:
- 5 喷混凝土面层的厚度在 50~150mm 之间,混凝土强度等级不低于 C20,3 天不低于 10MPa。喷混凝土面层内应设置钢筋网,钢筋网的钢筋直径 6~8mm,网格尺寸 150~300mm。当面层厚度大于 120mm 时,宜设置二层钢筋网。
- 5. 2. 2 土钉钻孔的向下倾角宜在 0~20°的范围内,当利用重力向孔中注浆时,倾角不宜小于 15°,当用压力注浆且有可靠排气措施时倾角宜接近水平。当上层土软弱时,可适当加大下倾角,使土钉插入强度较高的下层土中。当迂有局部障碍物时,允许调整钻孔位置和方向。

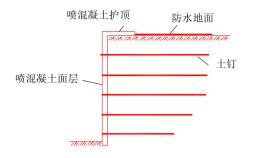


图 5.2.1 土钉支护

5.2.3 土钉钢筋与喷混凝土面层的连接采用图 5.2.3 所示的方法。可在土钉端部两侧沿土钉长度方向焊上短段钢筋,并与面层内连接相邻土钉端部的通长加强筋互相焊接。对于重要的工程或支护面层受有较大侧压时,宜将土钉做成螺纹端,通过螺母、楔形垫圈及方形钢垫板与面层连接。

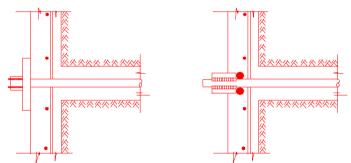


图 5.2.3 土钉与面层的连接

- 5.2.4 土钉支护的喷混凝土面层宜插入基坑底部以下,插入深度不少于 0.2m;在基坑顶部也宜设置宽度为 1~2m 的喷混凝土护顶。
- 5.2.5 当土质较差,且基坑边坡靠近重要建筑设施需严格控制支护变形时,宜在开挖前先沿基坑边缘设置密排的竖向微型桩(图5.2.5),其间距不宜大于1m,深入基坑底部1~3m。微型桩可用无

缝钢管或焊管,直径 48~150mm,管壁上应设置出浆孔。小直径的钢管可分段在不同挖深处用击打方法置入并注浆;较大直径(大于100mm)的钢管宜采用钻孔置入并注浆,在距孔底 1/3 孔深范围内的管壁上设置注浆孔,注浆孔直径 10~15mm,间距 400~500mm。

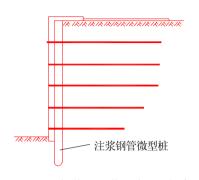


图 5.2.5 超前设置微型桩的土钉支护

5.3 支护整体稳定性分析

5.3.1 土钉支护的内部整体稳定性分析是指边坡土体中可能出现的破坏面发生在支护内部并穿过全部或部分土钉。假定破坏面上的土钉只承受拉力且达到按第5.4.5条所确定的最大抗力 R,按园弧破坏面采用普通条分法对支护作整体稳定性分析(图5.3.1a),取单位长度支护进行计算,按下式算出内部整体稳定性安全系数为:

$$F_s =$$

$$\frac{\sum ((W_1+Q_1)\cos a_1 \cdot \tan q_1 + (R_k/S_{hk})\sin \beta_k \cdot \tan q_1 + C_1(\Delta_1/\cos a_1) + (R_k/S_{hk})\cos \beta_k)}{\sum \lceil (W_1+Q_1)\sin a_1 \rceil}$$

(5.3.1)

式中 W_i,Q_i —作用于土条i的自重和地面、地下荷载; α_i ——土条i 圆弧破坏面切线与水平面的夹角;

 Δ_{i} ——土条 i 的宽度;

 φ ——土条i圆弧破坏面所处第j层土的内摩擦角j

 C_{i} ——土条 i 圆弧破坏面所处第 j 层土的粘聚力;

R_k——破坏面上第 k 排土钉的最大抗力,按 5. 4. 5 条确 定:

 β_k ——第k 排土钉轴线与该处破坏面切线之间的夹角;

 S_{hk} ——第 k 排土钉的水平间距。

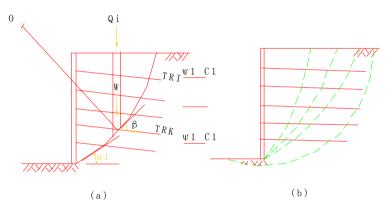


图 5.3.1 内部整体稳定性分析

当有地下水时,在上式中尚应计入地下水压力的作用及其对 土体强度的影响。

作为设计依据的临界破坏面位置需根据试算确定,与其相应的稳定性安全系数在各种可能的破坏面(图 5. 3. 1b)中为最小值,并不低于表 5. 3. 1 中规定的数值。

表 5.3.1 支护内部整体稳定性安全系数

基坑深度 (m)	≪6	6—12	≥12
安全系数最低值	1. 2	1. 3	1.4

注:1. 当支护变形较大会造成严重环境安全问题时,表中安全系数值 应增加 0.1~0.3。

- 2. 表中安全系数值不适用于软塑、流塑粘性土。
- 5. 3. 2 土钉支护还应验算施工各阶段的内部稳定性(图 5. 3. 2), 此时的开挖已达该步作业面的深度,但这一作业面上的土钉尚未 设置或其注浆尚未能达到应有的强度。施工阶段内部稳定性验算 所需的安全系数可比表5. 3. 1中的数值低0. 1~0. 2,但不小于 1. 1。

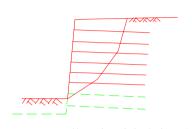


图 5.3.2 施工阶段内部稳定性验算

- **5.3.3** 土钉支护的外部整体稳定性分析与重力式挡土墙的稳定分析橡同(图 5.3.3),可将由土钉加固的整个土体视作重力式挡土墙,分别验算:
 - 1 整个支护沿底面水平滑动(图 5.3.3a);
- 2 整个支护绕基坑底角倾复,并验算此时支护底面的地基承载力(图 5. 3. 3b);

以上验算可参照《建筑地基基础设计规范》(GBJ7-89)中的计算公式,计算时可近似取墙体背面的土压力为水平作用的朗金主动土压力,取墙体的宽度等于底部土钉的水平投影长度。抗水平滑动的安全系数应不小于1.2;抗整体倾复的安全系数应不小于1.3,且此时的墙体底面最大竖向压应力不应大于墙底土体作为地基持力层的地基承载力设计值 f 的1.2 倍。

3 整个支护连同外部土体沿深部的圆弧破坏面失稳(图 5. 3. 3c),可按 5. 3. 1 条的规定进行验算,但此时的可能破坏面在土钉的设置范围以外,计算时式(5. 3. 1)中的土钉抗力为零,相应的安全系数要求同表 5. 3. 1。

5.3.4 当土体中有较薄弱的土层或薄弱层面时,还应考虑上部土体在背面土压作用下沿薄弱土层或薄弱层面滑动失稳的可能性(图 5.3.4),其验算方法与 5.3.3 条中有关整个支护沿底面水平滑动时相同。

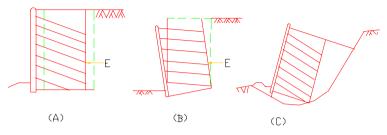


图 5.3.3 支护外部稳定性分析

图 5.3.4 沿薄弱土层或层面滑动失稳

5.4 土钉设计计算

- 5.4.1 土钉的设计计算遵循下列原则:
 - 1 只考虑土钉的受拉作用;
 - 2 土钉的设计内力按 5. 4. 2 条规定的侧压力图形算出;
- **3** 土钉的尺寸应满足设计内力的要求,同时还应满足 **5.3.1** 条规定的支护内部整体稳定性的需要。
- **5.4.2** 在土体自重和地表均布荷载作用下,每一土钉中所受的最大拉力或设计内力 N,可按图 5.4.2 所示的侧压力分布图形用下

式求出:

$$N = \frac{1}{\cos\theta} p \, S_{\mathbf{v}} S_{\mathbf{h}}$$

(5.4.2-1)

$$p = p_1 + p_q$$

(5.4.2-2)

式中 θ ——土钉的倾角;

p——土钉长度中点所处深度位置上的侧压力;

p₁——土钉长度中点所处深度位置上由支护土体自重引起的侧压力,据图 5. 4. 2 求出:

 p_a ——地表均布荷载引起的侧压力。

图中自重引起的侧压力峰压 🏞 m :

对于
$$\frac{c}{rH} \leq 0.05$$
的砂土和粉土:

$$p_{\rm m}=0.55k_{\rm a}TH$$

对于 $\frac{c}{rH}$ >0.05的一般粘性土:

$$p_{\rm m} = k_{\rm a} (1 - \frac{2c}{TH} \frac{1}{\sqrt{k_{\rm a}}}) TH \le 0.55 k_{\rm a} TH$$

粘性土 p_m 的取值应不小于 0.2TH。

图中地表均布荷载引起的侧压力取为

$$p_{q} = k_{a}q$$

以上各式中的r为土的重度,H为基坑深度, k_a 用下式计算:

$$k_a = tg^2(45^\circ - \frac{\varphi}{2})$$

对性质相差不远的分层土体,上式中的 φ , c 及 Γ 值可取各层土的参数 $tg\varphi$, c_i 及 Γ , 按其厚度 h_i 加权的平均值求出。

对于流塑粘性土,侧压力 p_1 的大小及其分布需根据相关测试数据专门确定。

当有地下水及其它地面、地下荷载作用时,应考虑由此产生的侧向压力,并在确定土钉设计内力N时,在式(5.4.2—1)和(5.4.

2-2)的侧压力p中计入其影响。

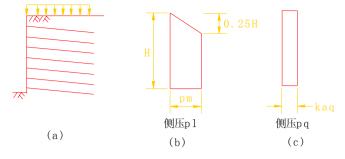


图 5, 4, 2 侧压力的分布

5.4.3 各层土钉在设计内力作用下应满足式(5.4.3):

$$F_{s,d}N \leqslant 1.1 \frac{\pi d^2}{4} f_{yk}$$
 (5.4.3)

N——土钉设计内力,按第 5. 4. 2 条确定;

d——土钉钢筋直径;

 f_{yk} — 钢筋抗拉强度标准值,按《混凝土结构设计规范》 (GBJ10-89)取用。

5.4.4 各层土钉的长度尚宜满足下列条件:

$$l \ge l_1 + \frac{F_{s,d}N}{\pi d_0 \tau}$$
 (5. 4. 4)

式中 *l*₁——土钉轴线与图 5. 4. 4 所示倾角等于(45°+q/2)斜 线的交点至土钉外端点的距离;对于分层土体,φ 值根据各层土的 tanq 值按其层厚加权的平均值 算出;

d₀------土钉孔径;

τ——土钉与土体之间的界面粘结强度。

5.4.5 对支护作内部整体稳定性分析时,土体破坏面上每一土钉

图 5.4.4 十钉长度的确定

达到的极限抗拉能力 R 按下列公式计算,并取其中的最小值,

按十钉受拔条件

 $R = \pi d_0 l_0 \tau$ (5. 4. 5-1)

按十钉受拉屈服条件

 $R=1.1 \frac{\pi d^2}{4} f_{yk}$ (5.4.5-2)

d —— 土钉钢筋直径:

l_a——十钉在破坏面一侧伸入稳定土体中的长度;

 τ —— \pm 打与土体之间的界面粘结强度:

 f_{**} — 钢筋抗拉强度标准值,按《混凝土结构设计规范》 (GBJ10-89)取用。

对于靠近支护底部的土钉,尚应考虑破坏面外侧土体和喷湿 凝土面层脱离土钉滑出的可能,其最大抗力尚应满足下列条件,

$$R \leq \pi d_0(l-l_a)\tau + R_1$$

(5, 4, 5-3)

式中 R1 为十钉端部与面层连接处的极限抗拔力。

5. 5 喷混凝土面层设计

在土体自重及地表均布荷载 q 作用下,喷混凝土面层所受 的侧向土压力 🕫 可按下式估算:

$$p_0 = (p_{01} + p_q)$$

(5, 5, 1-1)

$$p_{01} = 0.7(0.5 + \frac{s - 0.5}{5}) p_1 \le 0.7 p_1$$

(5, 5, 1-2)

式中s为土钉水平间距和竖向间距中的较大值,单位为 m,p_1 及 p_a 按第 5. 4. 2条确定。

当有地下水及其它荷载时,尚应计入这些荷载在混凝土面层 上产生的侧压。

- **5.5.2** 喷混凝土面层按《混凝土结构设计规范》(GBJ10-89)设计,面层土压力的计算值按第 5.1.2 条的原则确定,取荷载分项系数为 1.2。根据支护工程的重要性,当环境安全有严格要求时,另取结构的重要性系数为 1.1~1.2。
- **5.5.3** 喷混凝土面层可按以土钉为点支承的连续板进行强度验算,作用于面层的侧向压力在同一间距内可按均布考虑,其反力作为土钉的端部拉力。验算的内容包括板在跨中和支座截面的受弯,板在支座截面的冲切等。
- **5.5.4** 土钉与喷混凝土面层的连接,应能承受土钉端部拉力的作用。当用螺纹、螺母和垫板与面层连接时,垫板边长及厚度应通过计算确定。当用焊接方法通过不同形式的部件与面层相连时,应对焊接强度作出验算。此外,面层连接处尚应验算混凝土局部承压作用。

6 施 工

6.1 一般规定

- **6.1.1** 土钉支护施工前必须了解工程的质量要求以及施工中的测试监控内容与要求,如基坑支护尺寸的允许误差,支护坡顶的允许最大变形,对邻近建筑物、管线、道路等环境安全影响的允许程度。
- **6.1.2** 土钉支护施工前应确定基坑开挖线、轴线定位点、水准基点、变形观测点等、并在设置后加以妥善保护。
- **6.1.3** 土钉支护施工应按施工组织设计制定的方案和顺序进行, 仔细安排土方开挖、出土和支护等工序并使之密切配合;力争连续 快速施工,在开挖到基底后应立即构筑底板。
- 6.1.4 土钉支护的施工机具和施工工艺应按下列要求选用:
- 1 成孔机具的选择和工艺要适应现场土质特点和环境条件, 保证进钻和抽出过程中不引起塌孔,可选用冲击钻机、螺旋钻机、 回转钻机、洛阳铲等,在易塌孔的土体中钻孔时宜采用套管成孔或 挤压成孔;
 - 2 注浆泵的规格、压力和输浆量应满足施工要求;
- 3 混凝土喷射机的输送距离应满足施工要求,供水设施应保证喷头处有足够的水量和水压(不小于 0.2MPa);
- 4 空压机应满足喷射机工作风压和风量要求,可选用风量 9m³/min 以上、压力大于 0.5MPa 的空压机。
- 6.1.5 土钉支护每步施工的一般流程如下:
 - 1 开挖工作面,修整边坡;
 - 2 设置土钉(包括成孔、置入钢筋、注浆、补浆):

- 3 铺设、固定钢筋网;
- 4 喷射混凝土面层。

根据不同的土性特点和支护构造方法,上述顺序可以变化。支护的内排水以及坡顶和基底的排水系统应按整个支护从上到下的施工过程穿插设置。

6.1.6 施工开挖和成孔过程中应随时观察土质变化情况并与原设计所认定的加以对比,如发现异常应及时进行反馈设计。

6.2 开 挖

- **6.2.1** 土钉支护应按设计规定的分层开挖深度按作业顺序施工,在完成上层作业面的土钉与喷混凝土以前,不得进行下一层深度的开挖。当基坑面积较大时,允许在距离四周边坡8~10m的基坑中部自由开挖,但应注意与分层作业区的开挖相协调。
- **6.2.2** 当用机械进行土方作业时,严禁边壁出现超挖或造成边壁 土体松动。基坑的边壁宜采用小型机具或铲锹进行切削清坡,以保 证边坡平整并符合设计规定的坡度。
- **6.2.3** 支护分层开挖深度和施工的作业顺序应保证修整后的裸露边坡能在规定的时间内保持自立并在限定的时间内完成支护,即及时设置土钉或喷射混凝土。基坑在水平方向的开挖也应分段进行,可取 10~20m。

应尽量缩短边壁土体的裸露时间。对于自稳能力差的土体如 高含水量的粘性土和无天然粘结力的砂土应立即进行支护。

- **6.2.4** 为防止基坑边坡的裸露土体发生坍陷,对于易塌的土体可采用以下措施:
- 1 对修整后的边壁立即喷上一层薄的砂浆或混凝土,待凝结 后再进行钻孔:
- **2** 在作业面上先构筑钢筋网喷混凝土面层,而后进行钻孔并设置土钉:

- 3 在水平方向上分小段间隔开挖;
- 4 先将作业深度上的边壁做成斜坡,待钻孔并设置土钉后再清坡:
- 5 在开挖前,沿开挖面垂直击入钢筋或钢管,或注浆加固土 体(图 6. 2. 4)。

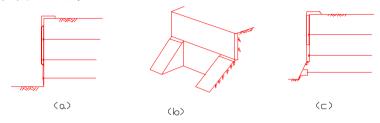


图 6.2.4 易塌土层的施工措施
(a)先喷浆护壁后钻孔置钉 (b)水平方向分小段间隔开挖
(c)予留斜坡设置土钉后清坡

6.3 排水系统

- **6.3.1** 土钉支护宜在排除地下水的条件下进行施工,应采取恰当的排水措施包括地表排水,支护内部排水,以及基坑排水,以避免土体处于饱和状态并减轻作用于面层上的静水压力。
- 6.3.2 基坑四周支护范围内的地表应加修整,构筑排水沟和水泥砂浆或混凝土地面,防止地表降水向地下渗透。靠近基坑坡顶宽2~4m的地面应适当垫高,并且里高外低,便于迳流远离边坡。
- **6.3.3** 在支护面层背部应插入长度为 400~600mm、直径不小于 40mm 的水平排水管,其外端伸出支护面层,间距可为 1.5~2m,以便将喷混凝土面层后的积水排出(图 6.3.3)。
- **6.3.4** 为了排除积聚在基坑内的设水和雨水,应在坑底设置排水沟及集水坑。排水沟应离开边壁 **0.5~1m**,排水沟及集水坑宜用砖砌并用砂浆抹面以防止渗漏,坑中积水应及时抽出。

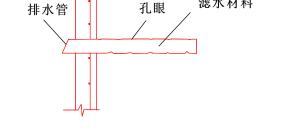


图 6.3.3 面层背部排水

6.4 +钉设置

- 6.4.1 土钉成孔前,应按设计要求定出孔位并作出标记和编号。 孔位的允许偏差不大于 150mm,钻孔的倾角误差不大于 3°,孔径 十20mm, 允许偏差为——5mm,孔深允许偏差为——50mm。成孔过程中遇有 障碍物续调整孔位时,不得影响支护安全。
- **6.4.2** 成孔过程中应做好成孔记录,按土钉编号逐一记载取出的 土体特征、成孔质量、事故处理等。应将取出的土体与初步设计时 所认定的加以对比,有偏差时应及时修改土钉的设计参数。
- **6.4.3** 钻孔后应进行清孔检查,对孔中出现的局部渗水塌孔或掉落松土应立即处理。成孔后应及时安设土钉钢筋并注浆。
- **6.4.4** 土钉钢筋置入孔中前,应先设置定位支架,保证钢筋处于钻孔的中心部位,支架沿钉长的间距为 2~3m,支架的构造应不妨碍注浆时浆液的自由流动。支架可为金属或塑料件。
- **6.4.5** 土钉钢筋置入孔中后,可采用重力、低压(0.4~0.6MPa)或高压(1~2MPa)方法注浆填孔。水平孔应采用低压或高压方法注浆。压力注浆时应在钻孔口部设置止浆塞(如为分段注浆,止浆塞置于钻孔内规定的中间位置),注满后保持压力 3~5min。重力注浆以满孔为止,但在初凝前需补浆 1~2 次。
- 6.4.6 对于下倾的斜孔采用重力或低压注浆时宜采用底部注浆

方式,注浆导管底端应先插入孔底,在注浆同时将导管以匀速缓慢 撤出,导管的出浆口应始终处在孔中浆体的表面以下,保证孔中气 体能全部逸出。

- **6.4.7** 对于水平钻孔,应用口部压力注浆或分段压力注浆,此时需配排气管并与土钉钢筋绑牢,在注浆前与土钉钢筋同时送入孔中。
- **6.4.8** 向孔内注入浆体的充盈系数必须大于 **1**。每次向孔内注浆时,宜预先计算所需的浆体体积并根据注浆泵的冲程数求出实际向孔内注入的浆体体积,以确认实际注浆量超过孔的体积。
- 6.4.9 注浆用水泥砂浆的水灰比不宜超过 0.4~0.45,当用水泥净浆时水灰比不宜超过 0.45~0.5,并宜加入适量的速凝剂等外加剂用以促进早凝和控制泌水。施工时当浆体工作度不能满足要求时可外加高效减水剂,不准任意加大用水量。浆体应搅拌均匀并立即使用,开始注浆前、中途停顿或作业完毕后须用水冲洗管路。
- 6.4.10 用于注浆的砂浆强度用 70×70×70(mm)立方试件经标准养护后测定,每批至少留取 3组(每组 3 块)试件,给出 3 天和 28 天强度。
- 6. 4. 11 当土钉钢筋端部通过锁定筋与面层内的加强筋及钢筋网连接时(图 5. 2. 3a),其相互之间应可靠焊牢。当土钉端部通过其他形式的焊接件与面层相连时,应事先对焊接强度作出检验。当土钉端部通过螺纹、螺母、垫板与面层连接时(图 5. 2. 3b),宜在土钉端部约 600~800mm 的长度段内,用塑料包裹土钉钢筋表面使之形成自由段,以便于喷射混凝土凝固后拧紧螺母;垫板与喷混凝土面层之间的空隙用高强水泥砂浆填平。
- 6. 4. 12 土钉支护成孔和注浆工艺的其它要求与注浆锚杆相同,可参照《土层锚杆设计与施工规范》(CECS 22:90)。

6.5 喷混凝土面层

- **6.5.1** 在喷射混凝土前,面层内的钢筋网片应牢固固定在边壁上并符合规定的保护层厚度要求。钢筋网片可用插入土中的钢筋固定,在混凝土喷射下应不出现振动。
- **6.5.2** 钢筋网片可用焊接或绑扎而成,网格允许偏差为士10mm。钢筋网铺设时每边的搭接长度应不小于一个网格边长或200mm,如为搭焊则焊长不小于网筋直径的10倍。
- **6.5.3** 喷射混凝土配合比应通过试验确定,粗骨料最大粒径不宜大于 **12mm**,水灰比不宜大于 **0.45**,并应通过外加剂来调节所需工作度和早强时间。
- **6.5.4** 当采用干法施工时,应事先对操作手进行技术考核,保证喷射混凝土的水灰比和质量能达到要求。喷射混凝土前,应对机械设备、风、水管路和电路进行全面检查及试运转。
- 6.5.5 喷射混凝土的喷射顺序应自下而上,喷头与受喷面距离宜控制在 0.8~1.5m 范围内,射流方向垂直指向喷射面,但在钢筋部位,应先喷填钢筋后方,然后再喷填钢筋前方,防止在钢筋背面出现空隙。
- 6.5.6 为保证施工时的喷射混凝土厚度达到规定值,可在边壁面上垂直打入短的钢筋段作为标志。当面层厚度超过100mm时,应分二次喷射,每次喷射厚度宜为50~70mm。在继续进行下步喷射混凝土作业时,应仔细清除预留施工缝接合面上的浮浆层和松散碎屑,并喷水使之潮湿。
- **6.5.7** 喷射混凝土终凝后 2 小时,应根据当地条件,采取连续喷水养护 5~7 天,或喷涂养护剂。
- 6.5.8 喷射混凝土强度可用边长 100mm 立方试块进行测定,制作试块时应将试模底面紧贴边壁,从侧向喷入混凝土,每批至少留取 3 组(每组 3 块)试件。
- **6.5.9** 土钉支护喷射混凝土的其它要求可参照《喷射混凝土施工技术规程》(YBJ226—91)。

7 土钉现场测试

- **7.0.1** 土钉支护施工必须进行土钉的现场抗拔试验,应在专门设置的非工作钉上进行抗拔试验直至破坏,用来确定极限荷载,并据此估计土钉的界面极限粘结强度。
- 7.0.2 每一典型土层中至少应有 3 个专门用于测试的非工作钉。测试钉除其总长度和粘结长度可与工作钉有区别外,应与工作钉采用相同的施工工艺同时制作,其孔径、注浆材料等参数以及施工方法等应与工作钉完全相同。测试钉的注浆粘结长度不小于工作钉的二分之一且不短于 5m,在满足钢筋不发生屈服并最终发生拔出破坏的前提下宜取较长的粘结段,必要时适当加大土钉钢筋直径。为消除加载试验时支护面层变形对粘结界面强度的影响,测试钉在距孔口处应保留不小于 1m 长的非粘结段。在试验结束后,非粘结段再用浆体回填。
- 7.0.3 土钉的现场抗拔试验宜用穿孔液压千斤顶加载,土钉,千斤顶,测力杆三者应在同一轴线上,千斤顶的反力支架可置于喷射混凝土面层上,加载时用油压表大体控制加载值并由测力杆准确予以计量。土钉的(拔出)位移量用百分表(精度不小于 0.02mm,量程不小于 50mm)测量,百分表的支架应远离混凝土面层着力点。
- 7. 0. 4 测试钉进行抗拔试验时的注浆体抗压强度不应低于6MPa。试验采用分级连续加载,首先施加少量初始荷载(不大于土钉设计荷载的 1/10)使加载装置保持稳定,以后的每级荷载增量不超过设计荷载的 20%。在每级荷载施加完毕后立即记下位移读数并保持荷载稳定不变,继续记录以后 1min、6min、10min 的位移读数。若同级荷载下 10min 与 1min 的位移增量小于 1mm,即可立即施加下级荷载,否则应保持荷载不变继续测读 15、30、60min 时

的位移。此时若 60min 与 6min 的位移增量小于 2mm,可立即进行下级加载,否则即认为达到极限荷载。

根据试验得出的极限荷载,可算出界面粘结强度的实测值。这一试验平均值应大于设计计算所用标准值的 1.25 倍,否则应进行反馈修改设计。

- **7.0.5** 极限荷载下的总位移必须大于测试钉非粘结长度段土钉弹性伸长理论计算值的 80%, 否则这一测试数据无效。
- 7.0.6 上述试验也可不进行到破坏,但此时所加的最大试验荷载值应使土钉界面粘结应力的计算值(按粘结应力沿粘结长度均匀分布算出)超出设计计算所用标准值的 1.25 倍。

8 施工监测

- 8.0.1 土钉支护的施工监测至少应包括下列内容:
 - 1 支护位移的量测;
 - 2 地表开裂状态(位置、裂宽)的观察:
 - 3 附近建筑物和重要管线等设施的变形测量和裂缝观察;
 - 4 基坑渗、漏水和基坑内外的地下水位变化。

在支护施工阶段,每天监测不少于 1~2 次;在完成基坑开挖、 变形趋于稳定的情况下可适当减少监测次数。施工监测过程应持 续至整个基坑回填结束、支护退出工作为止。

8.0.2 对支护位移的量测至少应有基坑边壁顶部的水平位移与垂直沉降,测点位置应选在变形最大或局部地质条件最为不利的地段,测点总数不宜小于3个,测点间距不宜大于30m。当基坑附近有重要建筑物等设施时,也应在相应位置设置测点。宜用精密水准仪和精密经纬仪。必要时还可用测斜仪量测支护土体的水平位移,用收敛计监测位移的稳定过程等。

在可能情况下,宜同时测定基坑边壁不同深度位置处的水平 位移,以及地表离基坑边壁不同距离处的沉降,给出地表沉降曲 线。

- 8.0.3 应特别加强雨天和雨后的监测,以及对各种可能危及支护安全的水害来源(如场地周围生产、生活排水,上下水道、贮水池罐、化粪池渗漏水,人工井点降水的排水,因开挖后土体变形造成管道漏水等)进行仔细观察。
- 8.0.4 在施工开挖过程中,基坑顶部的侧向位移与当时的开挖深度之比如超过3‰(砂土中)和3‰~5‰(一般粘性土中)时,应密切加强观察、分析原因并及时对支护采取加固措施,必要时增用其它支护方法。

9 施工质量检查与工程验收

- **9.0.1** 土钉支护的施工应在监理的参与下进行。施工监理的主要任务是随时观察和检查施工过程,根据设计要求进行质量检查,并最终参与工程的验收。
- 9.0.2 土钉支护施工所用原材料(水泥、砂石、混凝土外加剂、钢筋等)的质量要求以及各种材料性能的测定,均应以现行的国家标准为依据。
- **9.0.3** 支护的施工单位应按施工进程,及时向施工监理和工程的发包方提出以下资料:
- 1 工程调查与工程地质勘察报告及周围的建筑物、构筑物、 道路、管线图;
 - 2 初步设计施工图:
 - 3 各种原材料的出厂合格证及材料试验报告:
 - 4 工程开挖记录:
- 5 钻孔记录(钻孔尺寸误差、孔壁质量、以及钻取土样特征 等);
 - 6 注浆记录以及浆体的试件强度试验报告等:
- 7 喷混凝土记录(面层厚度检测数据,混凝土试件强度试验报告等):
 - 8 设计变更报告及重大问题处理文件,反馈设计图;
 - 9 土钉抗拔测试报告;
- 10 支护位移、沉降及周围地表、地物等各项监测内容的量测记录与观察报告。
- 9.0.4 支护工程竣工后,应由工程发包单位、监理和支护的施工单位共同按设计要求进行工程质量验收,认定合格后峪以签字。工程验收时,支护施工单位应提供竣工图以及第9.0.3条所列的全

部资料。

9.0.5 在支护竣工后的规定使用期限内,支护施工单位应继续对支护的变形进行监测。